SGD Optimizer
neualpy.optimizer.SGD(learning_rate=0.001, momentum=0.0, dampening=0.0, weight_decay=0.0, nesterov=False)
info
SGD Optimizer is mostly stable and can be used for any project. In the future, any chance of breaking changes is very low.
Applies stochastic gradient descent algorithm
For more information, check this page.
Supported Arguments
learning_rate=0.001
: (Float) Learning Rate for the optimizermomentum=0
: (Float) Momentum for the optimizerdampening=0
: (Float) Dampening of momentumweight_decay=0
: (Float) Weight decay for the optimizernesterov=False
: (Bool) Enables Nesterov momentum
Code Example
from neuralpy.models import Sequential
from neuralpy.optimizer import SGD
...
# Rest of the imports
...
model = Sequential()
...
# Rest of the architecture
...
model.compile(optimizer=SGD(), ...))