Rprop Optimizer

neualpy.optimizer.Rprop(learning_rate=0.01, etas=(0.5, 1.2), step_sizes=(1e-06, 50.0))
info

Rprop Optimizer is mostly stable and can be used for any project. In the future, any chance of breaking changes is very low.

Applies Rprop algorithm, Rprop:Resilient backpropagation algorithm

For more information, check this page.

Supported Arguments

  • learning_rate=0.01: (Float) Learning Rate for the optimizer
  • etas=(0.5,1.2): (Tuple) pair of (etaminus, etaplis), that are multiplicative increase and decrease factors
  • step_sizes=(le-06,50): (Tuple) a pair of minimal and maximal allowed step sizes for the optimizer

Code Example

from neuralpy.models import Sequential
from neuralpy.optimizer import Rprop
...
# Rest of the imports
...
model = Sequential()
...
# Rest of the architecture
...
model.compile(optimizer=Rprop(), ...))