AvgPool3D
neuralpy.layers.pooling.AvgPool3D(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, name=None)
info
AvgPool3D Layer is mostly stable and can be used for any project. In the future, any chance of breaking changes is very low.
AvgPool3D Applies a 3D avg pooling over an input.
To learn more about AvgPool3D layers, please check PyTorch documentation
Supported Arguments:
kernel_size
: (Integer | Tuple) Kernel size of the layerstride=None
: (Integer | Tuple) Stride for the conv.padding=0
: (Integer | Tuple) Padding for the conv layer.ceil_mode=False
: (Boolean) When True, will use ceil instead of floor to compute the output shapecount_include_pad=True
: (Boolean) When True, will include the zero-padding in the averaging calculationname=None
: (String) Name of the layer, if not provided then automatically calculates a unique name for the layer
Example Code
from neuralpy.models import Sequential
from neuralpy.layers.pooling import AvgPool3D
from neuralpy.layers.convolutional import Conv2D
# Making the model
model = Sequential()
model.add(Conv3D(filters=8, kernel_size=3, input_shape=(1, 28, 28, 28), stride=1, name="first cnn"))
model.add(AvgPool3D(kernel_size=3, stride=3, padding=0, ceil_mode=False, count_include_pad=True, name="Pool Layer"))