Dense
neuralpy.layers.linear.Dense(n_nodes, n_inputs=None, bias=True, name=None)
info
Dense Layer is mostly stable and can be used for any project. In the future, any chance of breaking changes is very low.
A Dense layer is a densely connected Neural Network layer. It performs a linear transformation of the input.
To learn more about Dense layers, please check pytorch documentation for it.
Supported Arguments
n_nodes
: (Integer) Size of the output samplen_inputs=None
: (Integer) Size of the input sample, no need for this argument layers except the initial layerbias=True
: (Boolean) If true then uses the biasname=None
: (String) Name of the layer, if not provided then automatically calculates a unique name for the layer
Example Code
from neuralpy.models import Sequential
from neuralpy.layers.linear import Dense
# Making the model
model = Sequential()
model.add(Dense(n_nodes=256, n_inputs=28, bias=True, name="Input Layer"))
model.add(Dense(n_nodes=512, bias=True, name="Hidden Layer 1"))
model.add(Dense(n_nodes=10, bias=True, name="Output Layer"))