Conv1D
neuralpy.layers.convolutional.Conv1D(filters, kernel_size, input_shape=None, stride=1, padding=0, dilation=1, groups=1, bias=True, name=None)
info
Conv1D Layer is mostly stable and can be used for any project. In the future, any chance of breaking changes is very low.
Applies a 1D convolution over an input signal composed of several input planes.
To learn more about Conv1D layers, please check PyTorch documentation
Supported Arguments:
filters
: (Integer) Size of the filterkernel_size
: (Integer | Tuple) Kernel size of the layerinput_shape=None
: (Tuple) A tuple with the shape in following format (input_channel, X). No need of this argument layers except the initial layer.stride=1
: (Integer | Tuple) Stride for the conv.padding=0
: (Integer | Tuple) Padding for the conv layer.dilation=1
: (Integer | Tuple) Controls the spacing between the kernel elementsgroups=1
: (Integer) Controls the connections between inputs and outputs.bias=True
: (Boolean) If true then uses the bias, Defaults totrue
name=None
: (String) Name of the layer, if not provided then automatically calculates a unique name for the layer
Example Code
from neuralpy.models import Sequential
from neuralpy.layers.convolutional import Conv1D
# Making the model
model = Sequential()
model.add(Conv1D(filters=8, kernel_size=3, input_shape=(1, 28), stride=1, name="first cnn"))
model.add(Conv1D(filters=16, kernel_size=3, stride=1, name="second cnn"))