RMSProp Optimizer
neualpy.optimizer.RMSProp(learning_rate=0.001, alpha=0.99, eps=1e-08, weight_decay=0.0, momentum=0.0, centered=False)
info
RMSProp Optimizer is mostly stable and can be used for any project. In the future, any chance of breaking changes is very low.
Applies RMSProp algorithm
For more information, check this page.
Supported Arguments
learning_rate=0.001
: (Float) Learning Rate for the optimizeralpha=(0.9,0.999)
: (Float) Learningn Rate decayeps=0
: (Float) Term added to the denominator to improve numerical stabilityweight_decay=0
: (Float) Weight decay for the optimizermomentum=0
: (Float) Momentum for the optimizercentered=False
: (Bool) if True, compute the centered RMSProp, the gradient is normalized by an estimation of its variance
Code Example
from neuralpy.models import Sequential
from neuralpy.optimizer import RMSProp
...
# Rest of the imports
...
model = Sequential()
...
# Rest of the architecture
...
model.compile(optimizer=RMSProp(), ...))